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PERIODIC SOLUTIONS OF SPATIALLY
PERIODIC HAMILTONIAN SYSTEMS

0 Introduction

In this paper we study the existence of periodic solutions for Hamiltonian systems of
ordinary differential equations

i = J(H(z,t) + f(t)) (0.1)

where H : R2, x R - R and f : R -- R2n. Here z = (p, q) E R2n, 'denotes derivative
with respect to t, H is the partial derivative of H with respect to z and

j= (, 0-I

is the standard symplectic form in R2 . We consider the following basic hypotheses on
H and f

(HO) H is of class C1,

(H1) H(p, q, t) = H(p, q, t + 2;r) V(p, q) C R2., Vt e R.

(fO) f is continuous, and

(fl) f (t) = f (t + 2r) Vt ER.

In the study of equation (0.1) the assumption that H is superquadratic has been
considered by many authors. This condition is usually expressed in the following form

(S) There are constants p > 2, r > 0 such that

O < pH(z,t) < z. H,(z,t) VzER2 " , Iz I> r, Vt E R.

Here, and in the rest of the paper, • denotes the usual inner product in R2" and its
associated norm.

There has been a considerable amount of work in the study of periodic solutions of
(0.1) and variations under condition (S). See, for example [16], [18], [2], [1] and [12]. Forot
We also mention the recent book by Mawhin and Willem [14] where the reader can
find an extensive bibliography. -

In this work we assume that the Hamiltonian H satisfies the following periodicity on
condition on the q-variables

(H2) H(p,q,t) = H(p,q + m, t) V(p,q) E R2 , Vm E Z", Vt E R. on/
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We call such an H a spatially periodic Hamiltonian. Under hypothesis (H2), condition
(S) cannot longer be true. Instead, we assume a version of (S) for the variables p

(H3) There are constants 1A > 1, r > 0 such that

O<pH(p,q,t)<p. Hp(p,q,t) VIpJ!r, VqER", Vt E R.

We note that we only require pt > 1, i.e. the Hamiltonian has to be superlinear in the
variable p.

To begin we will consider the case of the function f being identically zero.

Theorem 0.1 Suppose f = 0 and H satisfies (HO) - (113) and

(H4) There are constants a, b > 0 and s < A such that

Hq(p,q,t) 1< a I p I" +b V(p,q) E R2 , Vt ER.

Then the system

Z = JH (z,t) (0.2)

possesses at least n + 1 2ir-periodic solutions.

Strengthening hypothesis (114) we can also treat the case of a forced Hamiltonian.
Set f(t) = (fp(t), fq(t)) and consider

(f2) f2fq(t),dt = o.

We will prove the following theorem.

Theorem 0.2 Suppose f satisfies (f) - (f2) and H satisfies (HO) - (H3) and

(H4') There are constants a, b > 0 and s < p such that

IH(p,q,t) J:<aIpI"+b V(p,q) ER 2R,VtER.

Then !he system (0.1) possesses at least n + 1 2r-periodic sol. os.

Remark 0.1 By replacing 27r by any T > 0 we obtain the corresponding results for
T-periodic solutions for (0.1) and (0.2). We can also generalize (H2) by assuming that
H has a different period for each component of q.

Remark 0.2 Theorem 0.2 generalizes Theorem 1.5 of Rabinowitz in [201.
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Equation (0.1), under spatially periodic assumptions has been studied by several au-
thors. However in all cases the growth of the Hamiltonian is assumed to be at most
quadratic. When

H(p, q, t) = L(q, t)p p + V(q, t) (0.3)

with L(q,t) an n x n symmetric matrix, H satisfying (HO), (H1) and (H2), and f =
(0, fq) satisfying (fM), (fl) and (f2), Rabinowitz in [201 showed the existence of at least
n + 1 2r-periodic solutions for (0.1). See also results of Fonda and Mawhin [9], Liu
[13], where V is assumed periodic only in some of the variables. In [131 some resonant
problems are also considered.

If H(p,q,t) satisfies (H0), (H1) and (H2) and also

H(p + m, q, t) = H(p, q, t) V(p, q) E R2 , Vm E ZM, Vt E R (0.4)

and H is of class C2, f = 0 the existence of at least 2n + 1 2ir-periodic solutions for
(0.1), was proved by Conley and Zehnder [5]. Another proof was given by Chang [3].
Assuming that H is only C', Liu [13] and Szulkin [23] obtained the same conclusion.

When
H(pqt) = -Ap. p+ G(p,q,t) (0.5)

2
with A an n x n symmetric matrix, satisfies (HO), (H1) and (H2), and G,, is bounded,
Chang [4] showed the existence of at least n + 1 27r-periodic solutions of (0.1). See
also Fonda and Mawhin [9]. In [4], some intermediate situations, assuming that H is
periodic only in some of the variables q and some resonant problems are considered.
In [131 and [23] similar results where obtained assuming that G is only C'. We also
mention the work of Josellis [11] for related results.

The proof of Theorems 0.1 and 0.2 is based on a generalization of the Saddle Point
Theorem of Rabinowitz [17]. We consider a functional I : E x M ) R of class C',
where E is a Hilbert space and M is a compact manifold. Assuming that I satisfies
a saddle point condition on E, uniformly on M, we prove that I possesses at least
cd(M) + 1 critical points, where cl(M) denotes the cup length of the manifold M. This
generalization of the Saddle Point Theorem was proved recently by Liu [13] using a
notion of pseudo-category and a Galerkin approximation. Our version of the theorem
considers slightly different hypotheses and the proof proceeds in a more standard way.
The key ingredient in the proof is an intersection result we prove in Appendix A.

This paper is organized in 3 sections and 2 appendices. In Section 1 we prove some
Saddle Point type theorems that we will use in the applications. In Section 2 we begin
the proof of Theorems 0.1 and 0.2 by introducing the framework in which we study
the problem. We introduce several splittings of the Sobolev space of interest and also
we prove some estimates for various norms in the subspaces introduced. In Section 3
we prove Theorems 0.1 and 0.2 by verifying the hypothesis of the Saddle Point type
theorems proved in Section 1. Appendix A is devoted to the proof of an intersection
lemma. Appendix B has some remarks about the deformation Lemma.
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1 Saddle Point Type Theorems

In this section we prove a saddle point type theorem for functionals defined in E x M,
where E is a Hilbert space and M is a compact manifold. When M reduces to a point
our theorem becomes the Saddle Point Theorem of Rabinowitz [17] and [2].

We assume that E has a splitting E = X D Y with X # {0}. The subspaces X
and Y are not necessarily orthogonal and both of them can be infinite dimensional.
Let jj denotes the norm in E and let

Q ={x E / f x I1< R}

where R > 0. We note that .Q= {z E X/ 1 x J= R} and Y link in the sense of
Benci and Rabinowitz [2] and [19].

We consider a functional I : E x M - R R of class C1 having the following structure

I(z,9) = < Lz, z > +b(z,O) (1.1)

where < .,.> denotes the inner product in E, and

(I1) L :E - E is a linear, bounded, selfadjoint operator,

(2) b : E x M R is a functional of class C' such that Vb : E x M -- E
is compact in the sense that Vb(B x M) is precompact whenever B C E is
bounded. Here Vb represents the partial gradient of b with respect to z E E,
and

(13) The subspace X is invariant for the linear operator L.

We will also need some compactness for the functional I as expressed via the Palais-
Smale condition:

(P.S) Every sequence {(Zk, Ok)}kEN C E x M such that

I I(zk, Ok) I< c Vk E N and dI(zk, Ok) 0 as k----oo

possesses a convergent subsequence.

Here we denote by dI the differential of I.
Our saddle point type theorem is a multiplicity result expressed in terms of a

topological invariant of the manifold M, namely the cup length. Let Z be a topological
space. Let us consider ft*(Z), the Alexander-Spanier (A.S.) cohomology of Z with
coefficients in R, and let us denote by ,- the cup product in f/*(Z). See Spanier [22]
for definition and properties of A.S. cohomology theory.

...... ........... . . ,....=.nnn ,n~nmn ~ m sn nn nl ll n 5



Definition 1.1 We say that the cup length of Z is n, denoted by ce(Z) = n, if there
are n elements ui E ft'(Z), ni > 0, such that ul . ... u U 0 and n is maximal
with this property. If such an n does not exist we set ct(Z) = oo.

Now we can state our theorem.

Theorem 1.1 Let I: E x M j R be a C' function satisfying the P.S. condition.
Suppose that I satisfies (I1), (2), (13) and
(4) There are constants a < P such that

(i) I(x,O) _a VxE,9Q,VOEM
(ii) I(y,O) >_ 3 VyEY,VOEM
(iii) There is a constant y such that

I(x,0)-y Vx E Q, VO E M.
Then I possesses at least ce(M) + 1 critical points with critical values greater than

or equal to fl.

The proof of this theorem goes in the standard way. We start by defining certain
classes of functions and sets.

A function h belongs to the class F if it satisfies the following conditions:

(F1) h : [0, 1] x E x M - E x M is continuous, and h(t,.,.) is a homeomorphism
for every t E [0, 1],

(r2) h(O,z,0) = (z,0) V(z,0) EE x M.

(F3) PEh(t,x,O) = x V(x,0) E aQ X M, Vt E [0,1],

(r4) PEh(t, z, 9) = exp(v(t, z, O)L)z + K(t, z, 0) where K: [0,11 x E x M -+ E is
compact and v : [0, 1] x E x M - R is continuous and it maps bounded sets
into bounded sets.

Here PE denotes the projection from E x M onto E. We note that the class F is not
empty because h(t, z, 0) - (z, 0) belongs to F. Also the composition of two functions
in F belongs to F as can be easily seen.

Now, for every k = 1,2,... ,m, with m = ce(M) + 1, we define a class of sets Ak.
A set A belongs to the class Ak if it satisfies:

(al) A=h(1,QxM,.K) wherehEF, KCQxMand

catQxM(K) < m - k

Here cat denotes the Ljusternik Schnirelmann (L.S.) category. We refer the reader to
[21] for its definition and its basic properties that we will use later. The classes of sets
Ak that we have defined are clearly not empty since Am contains Q x M. Also they
are ordered by inclusion

Ai D A2... D A,.

The following intersection lemma is a key ingredient in our proof. We delay its proof
to Appendix A.
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Lemma 1.1 (Intersection Lemma) If h E 1' and we define

Sh = {(x,0) E Q x M / h(1,x,O) E Y x M}

then catQxM(Sh) > ci(M) + 1.

In what follows we will use the following notation. For c E R we set
IC = {(x,O) E E x M / I(z,O): <c}, K = {(z,0) E E x M / dI(z,O) =0}
and K,= {(z,0) E Ex M / I(z,O) =c, dI(z,O) =0}

Proof of Theorem 1.1. We define the following values

Ck= inf sup I(z,O) k=1,...,m.
AEAk (z,O)EA

By (14) (iii) the values ck are bounded from above. On the other hand, if A E Ak,
then A = h(1,Q x M \ K) with catQxM(K) <: m - k, and since by Lemma 1.1
catQxM(Sh) > m, we have catQxM(Sh \ K) > k > 1 and then A n (Y x M) 0 0. Thus,
by (14) (ii), the numbers ck are bounded from below by fl. Then, taking in account
the ordering in the sets Ak, we have that

Let us show now that each value Ck is a critical value of the functional I. We write
c = ck. Let us assume that K, = 0 and define = 3 - a). From the Deformation
Lemma (Appendix B), we get 0 < F < E and r7. Choose A E Ak, such that

sup I(z) < c + E.
zEA

We claim that 77(1, A) E Ak. In fact, noting that from (14) (i) we have that for every
x E 8Q

I(X, O) <a < C -

by the Deformation Lemma, (dO), (d2) and (d6), we conclude that 77 E r. If h E r is
such that A = h(1, Q x M \ K) then 17 o h E P and then 71(1, A) E .Ak.

Since A C Ic+" by (d5) of the Deformation Lemma, 77(1, A) C I,-, i.e.

sup I(z) c-
zE,7(1,A)

contradicting the definition of c. If Ce < C 2 < ... < Cm then the proof is complete. Let
us assume now that for j > 1 we have

C =" Ck = Ck+ 1 ... Ck+j

and that catQxM(K) _< j. Let E = ](/3 - a) and let U be a neighborhood of If, such
that

catEXM(KI) = catExM(U).
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Let e > 0 and 1r obtained from the Deformation Lemma. By definition of c there is
A E Ak+j such that

sup I(z, O) _ c +f
(z,O)EA

By definition A = h(1,Q x M .K) with h E F and catQxM(K) < m - (k +j). Since
h(1,-, .) is a homeomorphism, by the invariance and monotonicity properties of L.S.
category we have

catQxM(h-'(1, U) n (Q x M)) :_ j.

Let AC - h- 1 (1, U) n (Q x M), then by the subadditive property of L.S. category

catQxM(K U/A') < m - (j + k) + j = m - k,

which implies

A= h-(1,Q x M ,(KU')) E Ak and AC I,+,, U.

Then, arguing as before we have 77(1, A) E Ak, and by the Deformation Lemma

sup I(z, ) c-E
(z,O)Ev,(1,A)

contradicting the definition of c.O1

Remark 1.1 Theorem 1.1, with slightly different hypothesis, was proved by Liu [131.
He considers a notion of pseudo-category in order to obtain the intersection property
needed to show that the critical values are bounded. The infinite dimensional nature
of the problem is treated using a Galerkin approximation.

Remark 1.2 A result in the spirit of our theorem was obtained by Szulkin [23] by
using a notion of relative category designed to treat the problem. See Theorem 3.8 in
[23].

In our applications we will need a variation of Theorem 1.1 we consider next. Let
G : E ) E be a homeomorphism satisfying

(gi) G(x) = x Vx E X,

(g2) If h E F such that PEh(t, z, 0) = exp(v(t, z, 0)L)z + K(t, z, 0) then

G-'(PEh(t, z, 0)) = exp(v(t, z, O)L)x + Af(t, x, 0)

V(x, 0) E X x M Vt E [0, 1], where/-( : [0, 1] x X x M i E is compact.

8



Theorem 1.2 Let I: E x M - R be a C1 functional satisfying the P.S. condition.
Suppose that I also satisfies (I), (12), (3) and there is a homeomorphism G in E
satisfying (gl) and (g2) for which
(14') There are constants a < P such that

(i) I(x,O) <cr c V E OQ, VO E M
(ii) I(G(y),O) > 0 Vy E Y, VO E M
(iii) There is a constant -y such that

I(X,O) - -Y Vx E Q, VO E M.
Then I possesses at least ct(M) + 1 critical points with critical values greater than

or equal to 83.

Proof. The proof follows the same lines as that of Theorem 1.1. Only the Intersection
Lemma changes. We need to obtain an estimate on the category of the set

Sh ={(x,a) E Q x M / h(1,x,O) E G(Y) x M},

for h E l. But h(1, x, 9) E G(Y) x M is equivalent to

G-1 PEh(1,x,O) E Y.

Then by (g2) we see that

Sh = {(x,0) E Q x M / exp(v(1,x,O)L)z +/'(1,x, 0) E Y}.

Now we are in the same situation we were in Theorem 1.1.0

2 Application to spatially periodic Hamiltonian
systems. Preliminaries

Our goal is to apply the Saddle Point type theorems proved in Section 1 to the study
of periodic solutions of spatially periodic Hamiltonian system. In this section we set
up the basic framework in which we treat the problem.

We consider the Hilbert space C = W 1/2,2(Sl, R2n) consisting of functions z E
L 2 (S',R 2 ) with

11 z 112= (1+ I j I) 12 a < 00 0 (2.1)
jEZ

where z(t) = jZ aje ijt, aj = E, C C2', is the Fourier series expansion of z. For
z = (p,q), = (W, ) E E and smooth we define

B(z, f) p.0+W. 4dt and A(z)= 2B(z, z). (2.2)

Both A and B can be extended continuously to the whole space E, and the bilinear
form B induces a linear, bounded selfadjoint, operator L : 6 --, E defined by

B(z, ) =< Lz,( > Vz, E C. (2.3)

9



In (2.3) < -,. > denotes the inner product in E. We refer the reader to [191 for more
details. Let us consider now a Hamiltonian H of class C1 that satisfies the growth
condition

(G) H(z,t) <a I z I' +b Vz E , VtER

for some constants a, b > 0 and s > 1. Then we can define the functional

(z) =] H(z(t), t) dt (2.4)

on E. The functional 7- is well defined. Moreover 7" is of class C1 and its derivative V
is compact. See (19]. When f satisfies (fN) and (fl) we can define on E the functional

I(z) = A(z) - H(z) - j f(t) . z(t) dt (2.5)

The following proposition gives the relation between the critical points of I and the
solution of (0.1).See [19].

Proposition 2.1 z E C is a critical point of I if and only if z is 2r-periodic, contin-
uously differentiable and it satisfies

= J(H.(z,t) + f). (2.6)

We devote the rest of the section to defining some splittings of S and to obtaining some
estimates involving the norms of various subspaces of S.

Let us consider first the usual decomposition of C. Let {ej,. .. e2,} be the canonical
basis of R2 and define the following subspaces

E +  = span sin(jt)ek - cos(jt)ek+n,
cos(jt)ek + sin(jt)ek+, / j E N, 1 < k < n},

E- = -jpae{sin(jt)ek + cos(jt)ek+n,

cos(jt)ek - sin(jt)ek+n / j E N, 1 < k < n}, and

E° = span{ej,...,e2,,}.

Then we have the decomposition: S = E + ( E- ( E0 . We observe that A is positive
over E+, negative over E- and it vanishes over E° . Moreover an equivalent and more
convenient norm on C is defined by

II z III= A(z + ) - A(z-)+ I z 12 (2.7)

where z = z + z - + zo, z + E E+, z - E E- and zo E E0 , and j ] denotes the usual
norm in R2 . We will consider also the space LO E LO'(Sl, R2' ) for o" > 1. The following
inequality relates the norm " to the usual norm 1 in L

IIz IIa, z II E E (2.8)
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for certain constant a, > 0. See [101 for a proof of (2.8).
There is another natural splitting of &' by the components of the functions. Let us

define the following subspaces of C

Ep = -- a{sin(t)ek,cos(jt)ek / j E N U {0}, 1 < k < n},

Eq = I--- {sin(jt)ek+., cos(jt)Ek+. / E N, 1 < k < n},

E = aniel,...,en} and

Eq = span{en+,,... e n}.

Remark 2.1 The space Ep contains the constant functions with zero q coordinate,
but Eq does not contain constant functions other than zero.

Clearly the following decomposition of £ holds C = Ep E Eq E E ° . In our applications
we will need another decomposition of E, namely

E = (E- E E ° ) E (Eq E E90). (2.9)

By analyzing the Fourier series of elements in E it is easy to see that (2.9) holds. We
define X =E- E , Y = Eq and E = XE Y. Then we have a decomposition
of E as S - X E Y E ° . Since the definition of the subspaces of E was made in
terms of Fourier series, we can define corresponding subspaces of L'. Thus we have
the subspaces F+, F-, F ° , Fp, Fq, F° , and FO. The following two inequalities are
obtained directly, by noting that the projection operators are bounded. If z = z- + z ,

with z- E F- and zo E Fo, then

I z 1 o o II z 11, (2.10)

and

II z- Ii - /-II z (2.11)
for some constants flo, 0- > 0.

Let us now consider z E Fq. Then z can be decomposed as z = z + z - , with
z + E F+ and z- E F- and we have the following lemma.

Lemma 2.1 There are constants -1, 12 > 0 such that

^/1Z11.jI, : 11jZj - 1 '72Z11 Z'i, VzEFq (2.12)

and if z E Eq then
II z+ 11=1l Z- I"(2.13)

Proof. Given a function u E L-(S',R n) with Fourier series u = E'oajcos(jt) +
bj sin(jt) where aj, bj E R n, we define the conjugate of u by

00

= S_-bj cos(jt) + aj sin(jt). (2.14)
j=0

I1



If z E F then z = (0, q) with q E L'(S', R'), and we define

= (q, 0) (2.15)

With this notation we have
II i 11. 5 k. 11 z II, (2.16)

for some constant k, > 0. This result is known as Theorem of M. Riesz and its proof
can be found in Edwards [6]. Given z E Fq, we can decompose it as

1 1
z = (Z - i) + (+ ), (2.17)

and by analyzing the Fourier series we see that z+ = - e F+ and z- = (z+i) E
F-. Using the triangle inequality and (2.16) we obtain

Z +  11,- 1(1 + k.) z II,. (2.18)
2

Since, z(t) E {0} x W' and i(t) E R" x {O} we easily see that

11 Z I1 -< II -Z I- (2.19)

Then from (2.17) and (2.19) we have

11 z 1Its - 2 II z+  I1t, (2.20)

Inequalities (2.18) and (2.20) prove (2.12) for z+ .A similar argument gives the result
for z-. Finally, recalling that z = (0, q) and i = (q, 0), and assuming z is smooth

11,2f A(I1z

A(l(z- )) -. qdt and A(-(z +))= ] .qdt (2.21)

Then, from the definition of I" It in (2.7) and (2.21), it is clear that (2.13) is true for
z smooth, and then it is true for every z E Eq.O

3 Proof of Theorems 0.1 and 0.2

Here we prove Theorems 0.1 and 0.2, using Theorems 1.1 and 1.2. We will denote by
ah, bi, ci various constants appearing in the estimates.

Let us assume that the Hamiltonian H satisfies hypothesis (H0)-(H3) and (H4').
From hypothesis (H3) and (H4'), after integrating we obtain the following inequalities

' U(p,q,t) 1 a, p I-'+' +a2  and (3.1)

H(p,q,t) > a3 I p I" -a 4. (3.2)

B, (3.1) the Hamiltonian )' -,atisfies the growth condition (G), and assuming (fO) and
(fl) we can define th, funct unal I as in (2.5).

12



We can define a Zn-action on E by the following formula

mz=(p,q+m), Me Z", z = (p,q) E. (3.3)

If we consider £ = E e E0, we easily see that £/Z" - E x T", where Tn denotes
the n-dimensional torus. Because of (H2), (f2) and the definition of A, we see that
I(mz) = I(z) Vm E Znh, Vz E E so that I is Zn-invariant and then we can define I on
ExTn. If (w,) E E x T" we see that

1I(w, 0) 1 < Lw, w > +b(w, 0) (3.4)

where b(w, 0) is given by

b(w, 0) = - H(z, t) + f(t) .z(t) dt. (3.5)

Here, and also in the future, we identify (w,0) with z(t) = w(t) + qo where qo is a
representative of the class 0.

In E, we consider the splitting E = X E Y, where X = E- q E and Y = Eq. Then
one can see that X is an invariant subspace for L. This observation and the discussion
given above prove the following lemma.

Lemma 3.1 The functional I : E x Tn - R satisfies hypothesis (I0)-(12). If the
space E is decomposed as above, then I also satisfies (13).

We show next that the functional I satisfies the P.S. condition.

Lemma 3.2 1: E x Tn ) R satisfies the P.S. condition.

Proof. Let us consider a sequence (wk, Ok) E E x T" such that

I(wk, Ok) < c and dI(wk, Ok) -+ 0 as k -+ oo. (3.6)

Certainly {Ok}kpN has a convergent subsequence. Let us analyze {Wk}kEj and show
that it is bounded in E.

Let w = wk, and decompose it as w = wp + Wq with wp E Ep and Wq E Eq. By (3.6)
and for large k we have

c+II w I(w, z) - I'(w, z) w,, = A(w) - A'(w)w, - (3.7)

j2-H(w + qo, t) - Hp(w + qo, t) -wp dt - 2f. wqdt

But A'(w)w, = B(w, wp) = A(w), so from (3.7) and using (H3) in the standard way

c+ W )A, 10(1- j H(w + qo, t)- t 0df jf Wq dt. (3.8)
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Using the Schwarz inequality and (3.2) in (3.8), and then using (2.8) we obtain

wp 1 < a,- 11 w 11 +a9. (3.9)

On the other hand, for large k we have from (3.6)

I A'(w) - 2H,(w + qo, t) dt - 27j f dt 1_11 11 (3.10)

for every E E. Then, taking = w+ in (3.10), using Schwarz inequality, (2.8) and
the definition of we obtain

S2r!
211 w+ II2 <IJ H,(w+qo, t).w+dt I +a 6 11w +jj. (3.11)

By hypothesis (H4'), H6lder inequality and (2.8) with o, = p/p - s we have

J , H2 (w + qo, t) w + dt I< a7(1+ w1 p 11) w+ 11 . (3.12)

Thus, from (3.11) and (3.12) we obtain

11 w+ 11-5 a8(1+ 11 wp 1iD- (3.13)

By taking = w- in (3.10) and proceeding analogously we obtain a similar inequality
for w-, that together with (3.9) and (3.13) gives

II w+  II + II w- 1< ag(l+ 11 w I1"'.). (3.14)

From (3.9) and considering (2.10) we have

I p0 < ao(l+ II w 111h/). (3.15)

Inequalities (3.14) and (3.15) give

11 w 1[ <  aii(l+ II w 11"' + II w II/ ) (3.16)

from which, noting that p > 1 and t > s, we conclude that the sequence {Wk}kEN is
bounded in E. In particular {Pk}kEN is bounded. Now a standard argument shows
that {Wk}kIEN has a convergent subsequence. See [19].O

Next we will give a proof of Theorem 0.1 by showing that the hypothesis (14) is
satisfied.

Proof of Theorem 0.1. Since we are only assuming (H4), the functional (2.4)
may not be defined on all of E. Using a procedure employed by Rabinowitz, we will
define a modified Hamiltonian that satisfies (H4') and then show that the solutions
obtained for this modified problem are indeed solutions of the original problem.

Let K > 0 and x E C'(R+,R+) such that X(y) = 1 if 0 < y < K, X(y) = 0 if
y>!K+1andx'(y)<0forK<y<K+1. We define

HK(p,q,t) = X(I p J)H(p,q,t) + (1 - x(I p 1))Af I p 11 (3.17)
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where M = M(K) is a number satisfying

M >: K< max H(p,q,t) (3.18)
K< pj<K+1 I P (.

Certainly HK satisfies (HO), (Hi) and (H2) and it is not hard to check that it also
satisfies (H3). Note that the inequality (3.2) still holds for HK with a3 and a4 indepen-
dent of K if K is large. We also see that for some constants the following inequalities
hold

HK(p,q,t) < b, I p 11 +b2  (3.19)

and
I HKp(pq,t) 1< b3 Ip I"' +b4. (3.20)

From (3.20) and (H4) we see that (H4') is satisfied. Therefore the functional

IK(z, 0) = A(z) - j HK(z + qo, t) dt (3.21)

is well defined in £, it is of class C1 , and by Lemmas 3.1 and 3.2, it satisfies (I1)-
(13) and the P.S. condition. Here we are considering the splitting E = X ED Y where
X = E- ED E and Y = Eq.

Let us now show that the hypothesis (14) of Theorem 1.1 is also satisfied. If z E
Eq = Y, then we have

IK(z) = A(z) - j HK(z, t) dt =- HK(z, t) dt. (3.22)

But, since z E Eq, by (HI) and (H2) there is a constant such that HK(z,t) :_ b5 so
that, by taking / = -27rb 5 we have from (3.22) that

IK(Z) _ 0 Vz E Eq. (3.23)

If we consider x z- + POE X = E- ED EE , then we have

IK(X) -II z1-2 _-1 HK(z- + p0 , t) dt. (3.24)

Using (3.2) and the projection from Fp into FP we obtain from (3.24)

IK(X) 1 - z11 - j a I P,(z- + po) 1" -a4 dt

1 - z 112 -b6 I p0 It +b7 . (3.25)

Note that b6 and b7 are independent of K. From (3.25) follows the existence of a
constant c such that

IK() 5 c Vz- + po E E- 6 E° , (3.26)
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and there exists R > 0 so that for x 11= R

IK(X) i 0 - 1 - a. (3.27)

Inequality (3.23) still holds if we change z by z + qo, where qo r E°.The same is true
for inequalities (3.26) and (3.27). Then we see that hypothesis (14) of Theorem 1.1
is satisfied. It is well known the cup length of the n-dimensional torus Tn is n, see
for example [21]. Consequently, from Theorem 1.1, IK possesses at least n + 1 critical
points.

We show next that the critical points of IK obtained by the minimax method of
Theorem 1.1 are bounded independent of K. Let (wK, OK) E E x T' be a critical point
obtained from Theorem 1.1. Then

IK(WK, OK) :_ SUP IK(Z- + p, 0) 5 c (3.28)

IzI-+pOlII<R

where, as we noted earlier c is independent of K. Letting q% be a representative of OK

and decomposing WK = PK + qg we have from (113) and (3.2) that

c> (1 - -)/(a3 11 P III -27ra4), (3.29)

which implies there is a constant b8 independent of K such that

IIPK III < bs. (3.30)

Inequality (3.30) shows that
Ip I:" b (3.31)

for some constant bg independent of K.

Since (wK, OK) is a critical point of IK, from Proposition 2.1

PK - OH K + q0gt) (3.32)
Oq

so that by hypothesis (H4)

I 1 P II, <a 11 PK Illu -27rb. (3.33)

If PK = PK - pK, then

PK W)- PK (S) k(r)dr, (3.34)

integrating (3.34) with respect to s and taking absolute values we obtain

21r I PK(t) 1 2 r< I pk(r) I drdt <27r Ilk III. (3.35)

Consequently, from (3.30), (3.33) and (3.35) we find a constant blo such that

IPK(t) 1:5 bo VtER
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and this inequality together with (3.31) implies that pK(t) is bounded by a constant
independent of K. Thus, if K is large enough the n + 1, or more, critical points of IK
are really solutions of the original equation (0.2) completing the proof of the theorem. 0

Next we prove Theorem 0.2. Here the introduction of the forcing term f, in particu-
lar its q-component, produces difficulties due to the degeneracy of H in the q direction.
For this reason we cannot apply Theorem 1.1. However with some modifications, in-
troducing a homeomorphism G we can use Theorem 1.2. We start by stating a simple
lemma whose proof is obtained by standard calculus.

Lemma 3.3 Let -y > 2 and consider the real valued function g R+ x [0, 1) R R
defined by g(A,a) = (1 - a')A2 - c1(1 - a)"'. " - c2(1 + a)A - c3.

Then there exists a continuous function a : R+ - [0, 1) and a constant C depending
on cl, c2 and c3 such that

g(A, ,(A)) >_ C VA E R+ .

Proof of Theorem 0.2. Since H satisfies (HO)-(H3) and (H4'), from Lemma 3.1 and
3.2, the functional

I(z) = A(z)- H(z,t) + f. zdt

defined in E x Tn satisfies the hypothesis (I1)-(13) of Theorem 1.2. Now we prove it
also satisfies (14') for a certain G. Since H satisfies (H4'), after integrating we obtain
constants c4, cS

H(p,q,t) <_ c4 I p J"+1 +cs (3.36)

and then, perhaps with a different constant c6

H(p,q,t) < c4 J P-I +c6  (3.37)

with -' > 2. We consider as before the splitting E = X ( Y. We consider z E E
decomposed as

z~z-+p+q, z-+p°eX, qCY.

Since E also admits the splitting E = E+ ED E- ED EO, every q E Y can be decomposed
as

q=q++q-, q+EE +, q-EE-.

We define G: E -i. E as G(z) = z- + p0 + q+ - (I q 11,)q- where d is the function

defined in Lemma 3.3. It is easy to check that G is a homeomorphism by giving an
explicit formula for G 1 .

From the definition of G, it is clear that for every x = x- + po E X, G(x) = x.
Thus (gl) is true. In order to check (g2), let us consider Px and Py, the projections
onto X and Y induced by the splitting E = X (D Y, and PE- the projection onto
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E- induced by the splitting E = E + E E- E) E° . Let h E F, where r is the class of
functions defined in Section 1. Then

PEh(t, z, 9) = exp(v(t, z, O)L)z + K(t, z, 0)

where K is compact. If x E X, x = x- + p0, 0 E T , then

PEh(t, z, 9) = exp(v(t, x, O)L)x + PxK(t, x, 9) + PyK(t, x, 9) (3.38)

so for F = G - 1 we have

F(PEh(t,x,O)) = exp(v(t,x,O)L)x + K(t,x,O)- (3.39)

(&(JI PxK(t,x,0) II-) - 1)P_ PxK(t,x,0).

Since a is a bounded function and P o Px is continuous

A'(t,x,0) = K(t,x,0) - (5(11 PxK(t,,9) I[x,) - 1)PPxK(t,x,0)

is compact, so that (g2) is satisfied.
Now we study hypothesis (14'). First consider I over G(Y). Let q E Y, and

z = G(q). By the definition of G, z = q+ + aq-, where q = q+ + q-, q+ E E + , q- E E-
and a = (I q 111'). By Lemma 2.1, and (2.8) we have

A(G(q)) =11 q+ 112 - a2 1 q- 12> c7(1 - a2) 11 q 11' (3.40)

For q E Y, let 4 be the conjugate of q as defined in (2.15). Then from (2.17)

q++ aq- 2 (q-4)+1a(q+4)
1 1
1 (1 + a)q + (a -1)4. (3.41)
2 2

We note that 4 E Ep. Hence if Pp denotes the projection onto E induced by the
splitting E = E, E Eq, and using (2.16)

Pp(q+ + atq-) 11-= -(1 - a) 114 II1- c8(1 - a) Ii q I1- (3.42)

Thus by (3.37) and (3.42)

H(G(q), t) dt < c4 I Pp(q + aq-) 1r +c6 dt < c9(1 - a)' q II; +2,rc 6. (3.43)

Finally, by the Holder inequality, Lemma 2.1 and the definition of G we have

jo f/ " G(q) dt < c10 (1 + at) 11 q II, . (3.44)
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Then, (3.40), (3.43) and (3.44) imply

I(G(q)) > cs(l - a2) 11 q ll -c9(1 - )1 ql} -

clo(l + a) II q I1, - 2rc6. (3.45)

Recalling that a = 5(11 q 11,), and taking A =11 q 1I., Lemma 3.3 yields the existence of
a constant 8 so that

I(G(q)) _ 3 Vq E Y. (3.46)

We consider now I over X =E- E EO. Let X E E- E EPO with x = x- + po, x- E E-,
pO E E. Then

I(x) = A(x- j H(x + p0, t) dt - j f. (x- + p°) dt. (3.47)

Using Schwarz inequality, (2.8), (2.10) and (3.2) in (3.47) we obtain

1(X) < - II x- 112 _c1 I PO l +c12 II x- II +c13 I p0 I +2 rb2. (3.48)

From (3.48) follows the existence of a constant c so that

I(x)<c VxEX (3.49)

and for some R > 0

I(x):3-1=Ma VxEX, 1Ixll=R. (3.50)

Introducing 0 E Tn in the argument of I in (3.46), (3.49) and (3.50) does not alter the
inequalities then hypothesis (14') of Theorem 1.2 is satisfied, and so the existence of at
least n + 1 critical points of I follows. This with Proposition 2.1 completes the proof.Q

4 Appendix A.

This Appendix is devoted to the proof of the Intersection Lemma. This lemma can
be proved by studying a more general problem having to do with the continuation of
solutions of certain equations.

Let us consider a Hilbert space X and let Q = {x E X / 1 x 11:5 R} where R> 0
and 1I - 11 denotes the norm in X. Let M be a compact manifold and let us assume we
have a homotopy

F: [0,1] x Q x M -- X

satisfying the following conditions:

(El) F(t,x,O) = x + K(t,x,O) where K: [0,1] x Q x M - X is compact,

(E2) F(0, x,0)=x VxEQ, VOEMand
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(E3) II F(t,x,O) 11 > a > 0 VX EQ, Vt E [0,1], VO E M.

We consider the projection g : Q x M ) M, and we abuse notation by denoting
also by g several of its restrictions. We define the set

S = {(x,O) E Q x M / F(1,x,O) = 0}

then we have the following proposition

Proposition 4.1 If g : S-+ M is the projection then

g* : -(M) ft*(S)

is a monomorphism.

Here /:* denotes the A.S. cohomology.

Remark 4.1 The set

So = {(x,O) E Q x M / F(O,x,O) = 0}

is exactly {0} x M. Thus g : So -) M induces an isomorphism in cohomology. The
hypothesis on the homotopy H allow us to continue So to S without losing the fact
that g induces a monomorphism.

Proof. We start noting that the set S is a compact subset of Q x M. Hence by the
continuity property of A.S. cohomology ft*(S) = lirn ft*(V), where the direct limit
is taken over all neighborhoods of S in Q x M. Since M is a compact manifold, its
cohomology ring is finitely generated. Consequently in order to prove the proposition,
it is enough to show that g* : Ht*(M) - *(V) is a monomorphism, where V D S is
an open neighborhood of S in Q x M.

Now we reduce the problem to a finite dimensional one. Since the map K is
compact, given E > 0 there exists a finite dimensional subspace X in X and a continuous
function K, such that K, [0, 1] x Q x M ) f,

K, (t,x,0) - K(t,x,0) 1 e V(x,0) E Q x M, Vt E [0,11, (4.1)

and
K,(O,x,0) = 0 V(x,0) E Q x M. (4.2)

See [21]. Define the set

S, = {(x,0) E Q x M / x + K,(1,x,O) = 0}.

Then one can show that for e small enough, S, C V. By making e smaller if necessary,
we can assume c < 2. Define the function f : [0, 11 x Q x M -C X by restricting
I + K, to [0, 11 x Q x M, whereQ= Q n . If we define the set

= {(x,O) E Q x M / f(1,x,O) = 0}
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then we have j C S, C S. Defining : S - M as the projection, and denoting by i
the inclusion map we have the following commutative diagram

fr-(s) 4- iP(M)
% /

HI(V)

from which it is clear that g* is a monomorphism if §* is a monomorphism. By using
the continuity property of A.S. cohomology again, we see that it is enough to prove
that §" . fl*(M) - ft-(') is a monomorphism, where f/ is a neighborhood of in
Q x M. for notational convenience we suppress the tilde from now on. Let us define

= {(x,O) E Q x M / f(t,x,O) # 0 e E [0,1]}

and consider the following homotopy of pairs

h: [0,1 x (Q xM,Z) ---)(Q xM,(Q, 0}) xM)

defined by h(t,x,O) = (f(t,x,O),g(x,0)). By (E3), (4.1) and the fact that e < 2 we
have the following commutative diagram

H*Q--M 2 H*(Q x M, (Q \, {O) x M)

H*(Q x M,aQ x M)

where i and j denote inclusion maps. Since i* is an isomorphism we conclude that h;
is a monomorphism. Here we use singular cohomology since we are working with open
subsets of an euclidean space and with manifolds.

Then, from the homotopy axiom for cohomology we obtain that

h, = (f 1 ,g): (Q x M,Z) -) (Q x M,(Q \ {0}) x M)

induces a monomorphism in cohomology. Let

Z'= {(x,O) E Q x M / fi(X,O) 0.

Since 2 C Z' we obtain that

:(Q x M,Z') - (Q x M,(Q.. {0}) x M)

induces a monomorphism. Since Vc is open and f1 c C int(Z') = Z', defining Z = Z'nV
and using the excision axiom for cohomology, we conclude that

h,: (V, Z) --- (Q x M, (Q , {0}) x M)
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induces a monomorphism in cohomology. Let e be a generator of Hn(Q, Q .{0}) and
u E Hi(M) where n = dim(M), i > 0. Then

h;(e x u) = A*(f;(e) x g*(u)) = fr(e) - g*(u) (4.3)

by the basic relation between cross product and cup product in cohomology. Since h
is a monomorphism, from (4.3) it follows that g* is a monomorphism, and so the proof
is complete. 0

Now we can prove the Intersection Lemma. We will need to introduce the cup
length of a subspace of a topological space.

Definition 4.1 Given a topological space Y and A C Y, and letting jA : A - Y be
the inclusion, we say that cty.(A) = n if there exist ui E f-nt'(Y), ni > 0, i = 1,...n
such that

j 'a(U i - .. U, ) 0 0

and n is maximal with this property. If such an n does not exist then we set cty(A) =

00.

The following proposition relates the cup length with the L.S. category. The proof of
this proposition can be obtained by modifying appropriately the arguments given in
[21] to prove the case A = Y. For a proof in details see [8].

Proposition 4.2 If Y is a topological space and A C Y, then

caty(A) > cly(A) + 1

Proof of the Intersection Lemma. We are given h E F and we have

Sh = {(x,9) EQ x M I h(1,x,O) E Y x M}.

From F1-F4 and (13) we can define

F(t, x, 9) = x + exp(-v(t, x, O)L)PxK(t, x, 9)

and we see that
Sh = {(x,0) E Q x M / F(1,x,O) = 0}.

We have that F satisfying (E1)-(E3). Then in view of Proposition 4.2, it is enough to
show that

ceQXM(S) > c(M).

Let us consider the following commutative diagram

fI(Q x M) 4- ft* (M)

K §
fr*(S)

where j is the inclusion and ir and g are the projections into M. Since g* is a
monomorphism and lr* is an isomorphism, if ui E fH"i(M), i = 1,...,k, ni > 0
and u -..... -uk 0, then j*(r vl - r*k) = g(u ..... uk) A 0. Thus the
proof is complete.0
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5 Appendix B

In this Appendix we state the Deformation Lemma as needed in the proof of the Saddle
Point type theorem given in Section 2.1.

Lemma 5.1 (Deformation Lemma) Let E be a Hilbert space and M be a compact
manifold. Let I: E x M R R be a functional of class C' satisfying (I1), (12) and the
P.S. condition.

For every c E R, Z > 0 and U a neighborhood of IC, there exists e > 0, E > and a
homotopy 77': [0, 1] x M -- M such that
(dO). 71(O, z, 0) = (z, 9) V(z, 9) E E x M.
(dl). 77(t, .) is a homeomorphism Vt E [0, 1].
(d2). 7 (t,z,0) = (z,0) if I I(z,O) - c _ Vt E [0,1].
(d3). I(i7 (t,z,0)) < I(z,O) V(z,0) E E x M, Vt E [0,11.
(d4). 7(1,Ic+' , U) C I-E.

(d5). If KC = 0 then r7(1, Ic+E) C I - E.

(d6). PEi?(t,z,O) = exp(v(t,z,O)L)z + K(t,z,O) where 0 < v(t,z,9) < 1 and K
[0,1] x E x M -)- E is compact.

Proof. We don't give a proof of this lemma since it follows with minor modifications
from similar results. First (dO)-(d5) is obtained as a consequence of the general result
for Riemannian manifolds given, for example, in [15]. The extra structure of the
deformation map are obtained by the assumptions (I1) and (2). The deformation 77 is
constructed as a solution of a initial value problem

d77 (77)V( 77), 77 (0, z, 0) = (z, 0),(51
dt

where V is a pseudo-gradient of I and 0 < w < 1. When (5.1) is projected onto E we
obtain a situation similar to that of Proposition A.18 in [19]. Following the proof of
that proposition with minor modifications we obtain (d6). See Lemma 3.4 in [23] were
some of the details are carried out. 0.
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